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Abstract

In this paper, we present a non-symmetry and anti-packing object pattern
representation model (NAM) for object detection. A set of distinctive sub-
patterns (object parts) is constructed from a set of sample images of the ob-
ject class; object pattern are then represented using sub-patterns, together
with spatial relations observed among the sub-patterns. Many feature de-
scriptors can be used to describe these sub-patterns.The NAM model codes
the global geometry of object category, and the local feature descriptor of
sub-patterns deal with the local variation of object. By using Edge Direc-
tion Histogram (EDH) features to describe local sub-pattern contour shape
within an image, we found that richer shape information is helpful in improv-
ing recognition performance. Based on this representation, several learning
classifiers are used to detect instances of the object class in a new image.
The experimental results on a variety of categories demonstrate that our
approach provides successful detection of the object within the image.

Keywords: object detection, NAM, edge direction histogram, pattern
representation, SVM classifier

1. Introduction

In this paper we consider the problem of detecting and localizing object
of a generic category, such as horse or car in static images. This is a dif-
ficult problem because objects in a category can vary greatly in shape and
appearance. Variation arise not only from changes in illumination, occlusion,
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background clutter and view point, but also due to non-rigid deformations,
and intra-class variation in shape and other visual properties among objects
in a rich category.

How do we deal with the variation, especial the intra-class and pose vari-
ability of object? Most of the current researches have focused on model-
ing object variability, including several kinds of deformable template models
[1][2], and a variety of part-based, fragment-based models [3, 4, 5, 6, 7, 8, 9].

The method of Leibe et al. [10] give a highly flexible learned representa-
tion for object shape that can combine the information observed on different
training examples. Opelt, et al. [9] explore a similar geometric representa-
tion to that of Leibe et al. [10] but use only the boundaries of the object,
both internal and external (silhouette). The pictorial structure models [5][11]
represent an object by a collection of parts arranged in a deformable con-
figuration, where the deformable configuration is represented by spring-like
connections between pairs of parts. Crandall et al. propose k-fans model [12]
to study the extent to which additional spatial constraints among parts are
actually helpful in detection and localization. The patchwork of parts model
from [6] is similar, but it explicitly considers how the appearance model of
overlapping parts interacts to define a dense appearance model for images.
It is proved that adding spatial constraints gives better performance.

Our approach has two methods to deal with the variation of object, both
global and local. Firstly, we propose a non-symmetry and anti-packing object
pattern representation model (NAM) to represent an object category. The
NAM object model consist of several local parts, we call it sub-patterns.
The model codes the global geometry of generic visual object categories with
spatial relations linking object pattern to sub-patterns.

Secondly, the descriptors of sub-pattern can deal with the local variation
of object. Shape based information have been selected as a key component of
local features. We introduce the edge direction histogram (EDH) to describe
the contour shape of sub-pattern. Contour shape have been used in object
recognition to a certain extent: Shatton et al. [21] and Opelt et al. [9]
use boundary fragments to represent a object and use boundary matching
method to detect object.

The proposed framework can be applied to any object that consists of
distinguishable parts arranged in a relatively fixed spatial configuration. Our
experiments are performed on images of side views of horses; therefore, this
object class will be used as a running example throughout the paper to
illustrate the ideas and techniques involved.
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Figure 1: (a)Our hierarchical object model, (b)Descriptor set.

The rest of the paper is organized as follow. Section 2 describes the
non-symmetry and anti-packing model. Section 3 introduces the sub-pattern
descriptor. Section 4 present the framework of our approach. In section
5, experiments on real images show that the model is effective for object
categorization.

2. Description of non-symmetry and anti-packing pattern repre-
sentation model

The non-symmetry and anti-packing object pattern representation model
(NAM) is an anti-packing problem. The idea of the NAM can be described as
follows: Given a packed pattern and 𝑛 predefined sub-patterns {𝑝1, 𝑝2, ..., 𝑝𝑛},
pick up these sub-patterns from the packed pattern and then represent the
packed pattern with the combination of these sub-patterns.

The object pattern representation method is a hierarchical model that
codes the global geometry and local appearance of generic visual object cat-
egories with spatial relations linking object pattern (top level) to sub-patterns
(second level), and local feature cues linking sub-pattern (second level) and
local feature class (third level). See Fig.1 (a), the object pattern is at the
top level, the second and third level are the sub-patterns and local feature
descriptors of sub-pattern respectively.

Global Spatial relation: The spatial relations between top level and the
second level can be described by global spatial structure. Fig.2 presents an
example of the global spatial structure for horse class.

Local feature encoding: Sub-patterns can be described by a rich set of
cues (such as shape, color and texture) inside them. Between second level
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Figure 2: (a)Global spatial structure. Sub-patterns 𝑝𝑖 (black box) are arranged within
the bounding box (red). Small red circles show the optimal position, and blue ellipses the
spatial uncertainty 𝑑𝑐. (b)To code the pose variation of an side view horse using global
spatial structure. Green arrows show the deviation distance 𝑑𝑒.

and third level, we capture different sub-pattern cues from the sub-pattern
window, each type of cue is encoded by using an appropriate descriptor, and
these encoded information concatenated into a feature vector. In this paper,
we use shape information to represent the sub-patterns and edge direction
histogram (EDH) to describe the shape information. The detail of encoding
sub-pattern feature have presented in Section 3.

Here, we use an object pattern Γ to describe an object category. The ob-
ject pattern that consists of 𝑛 sub-patterns 𝑝𝑖 can be defined by the following
expression:

Γ =
𝑛∪

𝑖=1

𝑝𝑖(𝑥, 𝑟, 𝑑𝑒, 𝑤, 𝜙(𝑥, 𝑟)∣𝜙 = {𝑓1, 𝑓2,⋅ ⋅ ⋅ , 𝑓𝑚𝑖
})

Where 𝑥 is a two-dimensional vector specifying an ”anchor” position for
sub-pattern 𝑝𝑖 relative to the object pattern position; 𝑟 represent the scale of
the sub-pattern; 𝑑𝑒 is a deviation vector; 𝑤 shows the discriminative weight
of the sub-pattern. 𝜙(𝑥, 𝑟) denote a feature vector for the 𝑖𝑡ℎ sub-pattern and
𝑓𝑗(1 ≤ 𝑗 ≤ 𝑚𝑖) is one of the feature descriptors.

The non-symmetry relationship between sub-patterns describes the global
structure information of object category and is designed to decouple varia-
tions due to affine warps, pose variability and other forms of shape deforma-
tions. Anti-packing is a procedure that finding sup-patterns in query images,
combining them into a object pattern and classifying.
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3. Sub-pattern description

Sub-pattern can be described by a rich set of cues inside them, such as
shape, color and texture. Based on the observation that for a wide variety
of common object categories, shape matters more than local appearance. In
this paper we use shape information as a key component for object detection.

Since edge points are related to shape information closely, edge direction
histogram (EDH) is a very simple and direct way to characterize shape in-
formation of an object. It has been applied successfully to image retrieval
[13, 14, 15], and classification [16]. In addition, Kim used EDH to water-
marking text document images [18] based on the idea that sub-images have
similar-shaped EDHs. EDH is usually normalized to be scaling invariant,
but Zhang et al. [19]compute the 1-D FFT of the normalized EDH to obtain
rotation invariance and take it as the final signature of image.

EDH is computed by grouping the edge pixels which fall into edge di-
rections and counting the number of pixels in each direction. Edge map are
extracted by edge detection operator (we use Canny edge detector) and each

of edge points can be represented with the vector
−→
𝐷 𝑖,𝑗 = {𝑑𝑥𝑖,𝑗, 𝑑𝑦𝑖,𝑗} where

𝑑𝑥𝑖,𝑗 and 𝑑𝑦 are, respectively, horizontal and vertical differences of the point.
Each point’s edge direction (i.e., gradient direction) is calculated with the

equation 𝜃𝑖,𝑗 = arctan(
𝑑𝑦𝑖,𝑗
𝑑𝑥𝑖,𝑗

). We then divide direction into bins (e.g. 20∘ per
bin) and calculate the orientation histogram over some region.

A global direction histogram of a sub-pattern would average too much
spatial information to infer pose. We describe a sub-pattern window by
dividing evenly its bounding box into 𝑛 × 𝑛 grid, and accumulating a local
1-D histogram of edge direction over the edge pixels within the 2 × 2 grid,
as illustrated in Fig.3. In the experiments reported, we use 𝑛 = 4. The
combination of these histograms then represents the descriptor.

4. Detection

The pipeline of our detection framework as follow: first, training a clas-
sifier for each sub-pattern. Next, using one classifier to detect hypothesis
of object location, i.e., initial detection. After that, a verification scheme is
applied to the hypothesis to obtain final detection.

4.1. Learning classifiers
The task of learning is to establish 𝑛 classifier {𝐶𝑓1(⋅), 𝐶𝑓2(⋅),⋅ ⋅ ⋅ , 𝐶𝑓𝑛(⋅)}

for an object pattern with 𝑛 sub-patterns, each classifier is corresponding to
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Figure 3: The contour shape descriptor. (a)Original image, (b)Edge map, (c)4x4 grid on
edge map, (d)Edge direction histogram of one block containing 4 grids.

a sub-pattern. Take a classifier for example, given a set of training image
windows labeled as positive (object) or negative (nonobjective), each image
window is converted into a feature vector as described above. These vectors
are then fed as input to a supervised learning algorithm that learns to classify
an image window as member or nonmember of the object pattern. In our
experiments, the learning algorithm is a two-class SVM.

4.2. Detection hypothesis using one of the learned classifiers

The initial detection problem is to determine whether the query image
contains instances of sub-pattern and where it is. Having trained a SVM
window classifier, we can detect and localize novel object instances in a test
image using a simple sliding-window mechanism [24][25]. Here, we select the
𝑗𝑡ℎ sub-pattern 𝑝𝑗 as an initial detected sup-pattern. The classifier 𝐶𝑓𝑗(⋅)
corresponding to sub-pattern 𝑝𝑗 is applied to fix-sized windows at various
locations in the feature pyramid, each window being represented as a feature
vector 𝜙(𝑥, 𝑟), where 𝑥 specifies the position of the window in the image,
and 𝑟 specifies the level of the image in pyramid. The following expression
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represents the classifier 𝐶𝑓𝑗(⋅) at one of the sliding windows.

𝑠𝑝𝑗 = 𝐶𝑓𝑗(𝜙(𝑥, 𝑟)) (1)

A threshold 𝛼 is introduced to determine whether the window is positive
or contain a instance. If 𝑠𝑝𝑗 > 𝛼, then,the window is positive, ℎ𝑗 = (𝑥, 𝑟)
is a hypothesis and we put the ℎ𝑗 into the sub-pattern hypothesis set 𝐻 =
{ℎ𝑗,1, ℎ𝑗,2,⋅ ⋅ ⋅ , ℎ𝑗,𝑘}. Lowering the threshold increase the correct detections
but also increases the false positives; raising the threshold has the opposite
effect. In our experiment, we use 𝛼 = 0.5.

Figure 4: Image pyramid (Left), feature pyramid (Middle) and example of feature windows
(Right).

The feature pyramid illustrated in Figure 4, which is similar to [17] , spec-
ifies a feature map for a finite number of scales in a fixed range. In practice
we compute feature pyramid by computing a standard image pyramid via
repeated soothing and subsampling, and then computing a feature map from
each level of the image pyramid. A test image is scaled to sizes ranging from
0.48 to 1.2 times the original size, each scale differing from the next by a
factor of 1.2.

4.3. Verification

These hypothesis are then refined through a verification scheme to obtain
final detection result. The first step is to generate a hypothesis ℎΓ of the
object pattern Γ by applying a transformation T(⋅) to ℎ𝑗 and Γ . Fig. 5
(b) illustrate the transformation procedure. ℎ𝑗 is one of hypothesis in set 𝐻
. The transformation T(⋅) exploits the rough localization provided by the
spatial relationship between the sub-patterns and the object pattern. Then
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the transformation for the hypothesis ℎ𝑗 and object pattern Γ is characterized
by:

ℎΓ = T(ℎ𝑗,Γ) (2)

ℎΓ = (𝐿1, 𝐿2,⋅ ⋅ ⋅ , 𝐿𝑛)

 
1h

 
2h

 
2h

 
1h

(a) (b)

(c) (d)

(e)

Figure 5: Initial detection and verification. (a)Query image, (b)Hypothesis set of initial
detection {ℎ1, ℎ2}, (c)Process of verification for ℎ1,(d)Process of verification for ℎ2 and
(e)Final result.

Where 𝐿𝑖 = (𝑥𝑖, 𝑟𝑖, 𝑑𝑖)(1 ≤ 𝑖 ≤ 𝑛) is the expected location of sub-patterns
beside ℎ𝑗. This transformation provides not only position 𝑥𝑖 , scale estimation
𝑟𝑖 but also deviation 𝑑𝑖 of sub-patterns in the object pattern.

Next, classifier 𝐶𝑓𝑖(⋅) is applied to the corresponding window at location
𝐿𝑖.

𝑠𝑝𝑖 = 𝐶𝑓𝑖(𝜙(𝐿𝑖)) (3)

Where 𝑠𝑝𝑖 is to determine that whether location 𝐿𝑖 contains sub-pattern 𝑝𝑖
. The overall verification score 𝑆𝑣𝑒𝑟(ℎΓ) for object pattern Γ is a combination
of the sub-patterns detection result 𝑠𝑝𝑖 :

𝑆𝑣𝑒𝑟(ℎΓ) =
𝑛∑

𝑖=1

(𝑤𝑖 ⋅ 𝑠𝑝𝑖 − 𝑑𝑒𝑖) (4)
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Where 𝑤𝑖 is the discriminative weight of sub-pattern 𝑝𝑖 , 𝑑𝑒𝑖 is the de-
viation of sub-pattern from the optimal position. The verification of object
pattern was illustrated in Fig. 5 (c) and (d). When the value of the 𝑆𝑣𝑒𝑟 is
above a threshold 𝛽, the hypotheses position ℎΓ contains an instance of the
object pattern.

5. Experiments

We present extensive experimental evaluation, involving several existing
data sets covering eight diverse shape-based object classes for a total of more
than 1400 test images.

5.1. Evaluation Criteria

In this section, we investigate the performance of our system under the
PASCAL criterion. For a detection to be marked as correct, its inferred
bounding box 𝑏𝑖𝑛𝑓 must agree with the ground truth bounding box 𝑏𝑔𝑡 based

on an overlap criterion as
𝑎𝑟𝑒𝑎(𝑏𝑖𝑛𝑓

∩
𝑏𝑔𝑡)

𝑎𝑟𝑒𝑎(𝑏𝑖𝑛𝑓
∪

𝑏𝑔𝑡)
> 0.5. Each 𝑏𝑔𝑡 can match to only one

𝑏𝑖𝑛𝑓 , and so spurious detections of the same object count as false positives.
When a detection system is put into practice, we are interested in knowing

how many of the objects it detects, and how often the detections it makes
are false. This trade-off is captured more accurately by a variation of the
recall-precision curve, where

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑛𝑃
(5)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

where 𝑇𝑃 is the number of true positives; 𝐹𝑃 is the number of false posi-
tives. 𝑛𝑃 is the total number of positives in data set.The first quantity of
interest, namely, the proportion of objects that are detected, is given by the
recall. The second quantity of interest, namely, the number of false detec-
tions relative to the total number of detections made by the system, is given
by

1− 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
(7)

Plotting recall versus (1-precision), therefor, expresses the trade-off.
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Performance is also evaluated by plotting detection rate (DR) versus the
incidence of false positives (false positives per image (FPPI)) while varying
the detection threshold, where

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑛𝑃
(8)

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑝𝑒𝑟 𝑖𝑚𝑎𝑔𝑒 =
𝐹𝑃

𝑛𝑁
(9)

where 𝑛𝑁 is the total number of images in data set. Comparison between
different methods is mainly based on two points on the DR/FPPI plot, at
0.3 and 0.4 FPPI.

5.2. INRIA horse and Weizmann-Shotton horse

INRIA horse [20]. This challenging data set consists of 170 images con-
taining one or more horses, seen from the side, and 170 images without
horses. Horses appear at several scales and against cluttered backgrounds.
Weizmann-Shotton horse [21]. Shotton et al. [21] propose another horse
detection data set, composed of 327 positive images containing exactly one
horse each and 328 negative images. The INRIA and Weizmann are very
challenging data sets of horse images, containing different breeds, colors, and
textures, with varied articulations, lighting conditions, and scales.

Table 1: Performance of our detection system on INRIA horse data set, containing 170
positive images and 170 negative images.

Threshold 𝛽
NO. of correct
detections,TP

No. of false
detections,FP

Recall,R
TP/170

Precision,P
TP/(TP+FP)

20 152 110 0.8941 0.5802
30 138 107 0.8118 0.5633
40 130 98 0.7647 0.5702
50 126 86 0.7412 0.5942
60 121 74 0.7118 0.6205
80 110 53 0.6471 0.6748
100 103 45 0.6059 0.6959
120 87 39 0.5118 0.6905
150 67 26 0.3941 0.7204
180 41 14 0.2412 0.7455
210 23 7 0.1353 0.7667
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Table 2: Performance of our detection system on Weizmann horse data set, containing
328 images .

Threshold 𝛽
NO. of correct
detections,TP

No. of false
detections,FP

Recall,R
TP/170

Precision,P
TP/(TP+FP)

20 299 36 0.9144 0.8925
30 294 34 0.8991 0.8963
40 289 31 0.8838 0.9031
50 283 28 0.8654 0.9099
60 266 24 0.8135 0.9172
80 229 17 0.7003 0.9309
100 206 11 0.6299 0.9493
120 185 8 0.5657 0.9585
150 149 6 0.4557 0.9612
180 106 4 0.3242 0.9636
210 62 2 0.1896 0.9688

We present our results in Table 1 and 2. The different detection results
are obtained by varying the threshold parameter 𝛽 as described in Section
4.3. Figure 6 show the output of our detector on some sample test images.

We compare our method with Dalal et al. [24] and Ferrari et al. [23]
on the INRIA and Weizmann horses data sets. We randomly select 100
training images per category in Caltech101 and Google images to train clas-
sifiers. Dalal’s method is currently the state of the art in human detection
and has proven very competitive on other classes as well. The object detec-
tion method by Ferrari et al. achieved considerable gains on many object
categories. Like ours, their object detectors is based on sliding a window
subdivided into tile but uses different feature descriptors.

The results are displayed in Figure 8. Our detector achieves a substan-
tially higher performance than HOG.

5.3. ETHZ Shape classes

The ETHZ shape database(collected by V. Ferrari et al. [22]) consists
of five distinctive shape categories (apple logos, bottles, giraffes, mugs and
swans) in a total of 255 images. All categories have significant intra-class
variations, scale changes, and illumination changes. Moreover, many objects
are surrounded by extensive background clutter and have interior contours.

We compare to [22] on the ETHZ shape database using the same detection
system with the same settings. Experiments are conducted in 5-fold cross-
validation. We split the entire set into half training and half test for each
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Figure 6: Comparison between our detector, Ferrari et al. [23] PAS-based one and Dalal
et al. [24] HOG-based one.

Table 3: Comparison of detection performance with Ferrari et al. [22] on the ETHZ shape
data set at 0.4 FPPI.

Applelogos Bottles Giraffes Mugs Swans average
Our method 88.6%(3.7) 83.4%(4.8) 83.9%(4.9) 83.5%(5.3) 87.5%(7.2) 85.4%
Ferrari 83.2%(1.7) 83.2%(7.5) 58.6%(4.6) 83.6%(8.6) 75.4%(13.4) 76.8%

category, and average performance from 5 random splits is reported. This
is consistent with the implementation in [22] which reported the state-of-the
art detection performance on this data set. Table 3 show our comparison to
[22] on each of the categories. Average over all categories we improve the
performance of [22] by 8.6% to 85.4%. On applelogos, giraffes and swans,
we improve the performance by 5.4%, 25.3% and 12.1% respectively. On
bottles and mugs, our approach performs comparable. We account the per-
formance on the bottles and mugs to the shape which is less discriminant
with respect to the background. As the data set was designed to test shape-
based approaches, the improvements obtained by our approach underlines
the versatility and adaptively of the hierarchical representation.

6. Conclusion

We have proposed a non-symmetry and anti-packing object pattern rep-
resentation model (NAM) to represent a object category. This model can
effectively codes global structure of object. The object pattern model con-
sists of several part sub-patterns. We selected appropriate feature descriptor
for the sub-pattern to deal with the local variation. In our work, the edge di-
rection histogram descriptor introduced to describe the shape information of
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Figure 7: Detections for INRIA andWeizmann horses data sets when the value of threshold
𝛽 is 50. In the middle row, the rightmost image shows a missed detection.

sub-patterns. Based on this representation, several learning classifiers were
trained to detect sub-pattern instances. The proposed framework can be ap-
plied to any object category that consists of distinguishable parts arranged
in a relatively fixed spatial configuration.
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